
Copyright (c) 2015 Intelligent Light
All Rights Reserved

Copyright (c) 2015 Intelligent Light
All Rights Reserved

IN SITU POST-PROCESSING WITH VISIT,
LIBSIM AND FIELDVIEW

Brad Whitlock
Intelligent light

Applied Modeling & Simulation (AMS) Seminar Series
NASA Ames Research Center, January 16, 2015

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Overview

•  Intelligent Light
Overview

•  In situ
•  VisIt/Libsim and

FieldView
•  Workflow success

story
•  Instrumenting a

simulation using
Libsim

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Intelligent Light
•  Established in 1984

–  Nearly three decades in the software
& services business

–  FieldView launched in 1990
–  Global Customer Base
–  Truly Solver Independent
–  Multiple CFD practitioners on staff

•  We bridge CFD & IT for customers
CFD Solvers

IT

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Serving the CFD Community
•  FieldView Software Products

–  Comprehensive scope, from laptops to HPC
•  Visualization, numerical analysis
•  Data management & Automation

•  CFD Consulting Services Team
–  Training (on-site or at Intelligent Light)
–  Script development, FieldView customization
–  Workflow Automation & Optimization

•  Applied Research Group (ARG)
–  R&D in advanced post-processing & CFD methods
–  Feeds technology into FieldView

Our Mission: To help our customers using CFD to
do more with less and make better decisions

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Applied Research Group
Strategic R&D for CFD, post-processing & visualization

 •  Led by Dr. Earl P.N. Duque
•  Air Force Research Lab –

EPISODE
–  Large Scale Extracts
–  POD
–  Reduced Order Models

•  Department of Energy –
FieldView-VisIt
–  Open Source Post-Processing

Software
–  Commercialized for High End Users

3D Fractal Isosurface from VisIt on BlueGene/Q

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Active Deployment / Continuous Development
•  DOE has chosen Intelligent Light to commercialize VisIt for

engineering use – SBIR Phase 2
–  Binary FieldView XDB libs with VisIt Open source
–  Open-source VisIt engine, with FieldView GUI in client
–  Supported Software

•  Libsim already coupled to
–  CREATE/AV – Kestrel
–  FUN3D

•  Other significant efforts
–  DOE-OASCR: Scalable Analysis Methods and In Situ Infrastructure for

Extreme Scale Knowledge Discovery
•  Infrastructure for ExaScale
•  Team with Lawrence Berkeley National Lab (Lead), Argonne, Georgia Tech &

Kitware
–  Lawrence Livermore National Laboratory: Blue Gene Q Port

Copyright (c) 2015 Intelligent Light
All Rights Reserved

•  In situ processing couples data analysis
and visualization with the simulation’s
execution so both are done in tandem

•  There are different forms:
–  In transit – operates on the data when it is

staged to another compute resource

– Tightly coupled – operates on the data in the
same address space as the simulation

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Case For Using In Situ
•  I/O in supercomputers has not

kept pace with compute power
–  Some applications report 90%

of time spent in I/O [Peterka et al.]
–  Post processing simulation files

requires write then read, paying
for I/O twice in different
application

•  In situ reduces I/O costs and
makes it feasible to save
analyzed results (much smaller)
at higher temporal frequency

•  In situ provides an opportunity to
analyze more of the data rather
than just the portion that is
typically saved

Machine Year Writable
FLOPS

Whole-
System
Checkpoint

ASCI Red 1997 0.075% 300 sec

ASCI Blue
Pacific

1998 0.041% 400 sec

ASCI White 2001 0.026% 480 sec

ASCI Red
Storm

2005 0.035% 660 sec

ASCI
Purple

2005 0.025% 500 sec

NCCS XT4 2007 0.004% 1400 sec

Roadrunner 2008 0.005% 480 sec

NCCS XT5 2008 0.005% 1250 sec

ASC
Sequoia

2012 0.001% 3200 sec

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Software to Enable In Situ Workflow

•  The simulation is the host
program that controls
execution and generates
data

•  VisIt/Libsim forms the in
situ infrastructure and its
supporting runtime library
which creates data
products such as XDB
extracts for post hoc
analysis

•  FieldView is the
postprocessor and
ultimate consumer for
data products created in
situ

Simulation

FieldView VisIt / Libsim data

Copyright (c) 2015 Intelligent Light
All Rights Reserved

§  VisIt is open source software for visualizing and
analyzing petascale simulation datasets

98K cores 8 trillion cells

VisIt is made for large problems

3D Fractal
Dataset on
LLNL Vulcan
BlueGene/Q
(98 billion cells)

•  Started Summer 2000
•  R&D 100 award winner 2005
•  Used worldwide
•  Target use cases:

•  Quantitative Analysis
•  Comparative Analysis
•  Data Exploration
•  Visual Debugging
•  Presentation Graphics

•  Intelligent Light’s VisIt work
partially supported by DOE
Grant SC0007548.

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Libsim

Instrumented Simulation Optional Interactive Client

VisIt runtime
library

Simulation Code

Libsim

Adaptor
(C, C++, Fortran)

output

•  Libsim enables simulations perform data analysis and
visualization in situ by applying VisIt algorithms to data from
the simulation.

•  Libsim supports both interactive connections to running
simulations as well as batch-only modes of operation.

• Codes: Ale3D, Mercury, Kull, Nek5000, Kestrel, FUN3D, …

Copyright (c) 2015 Intelligent Light
All Rights Reserved

FieldView
•  FieldView been on the market for

CFD post-processing since 1991
•  Graphic User Interface design

created by close collaboration with
Industry engineers and analysts

•  Over 3000 licenses of FieldView in
use today throughout the world

•  Industries ranging from aerospace
and automotive to nuclear
engineering, turbomachinery, wind
energy and food processing.

•  Scales well to 256 nodes per
dataset, 30 Bn cell unsteady as
high water mark

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Put it all together: In Situ Extracts
•  VisIt’s export mechanism lets it

write XDB files in situ
•  FieldView can efficiently consume

the XDB files generated in situ and
visualize them

•  The volume data did not have to
be written to disk!

•  Analyzed results are far smaller,
enabling frequent in situ extract
dumps

XDB

Simulation

VisIt Runtime

Rank 1

Rank 0

Rank n

…

Libsim

export

FieldView

XDB files extracted
using VisIt

Extracts overcome in situ’s greatest weakness –
that you need to have some idea of what you
want to see in the end. Extracts are small enough
to save frequently and permit interactive
exploration using traditional post-processing
methods.

Copyright (c) 2015 Intelligent Light
All Rights Reserved

A successful result

Maui
HPC

PAX
River

XDB
s

•  Many timesteps of unsteady data are produced at Maui,
Hawaii HPC center

•  Post-processing via FieldView (interactive and movie
making) done at Pax River, Maryland

•  “The processing time of the XDB extracts are a very
small fraction… I can run through 100 frames of data in
minutes using the extracts compared to hours using the
full solution.”

•  About 15% of runtime spent on in situ

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Vi
sI

t
R

un
tim

e

Libsim puts VisIt in situ
•  VisIt provides Libsim, a library that simulations may use to let VisIt

connect and access their data
•  Share simulation’s arrays to avoid I/O and data movement

Simulation

Libsim
Front End

Adaptor

Libsim
Front End

Adaptor Data

Source	

Filter	

Filter	

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Libsim Programming Interface
•  Control Interface handles connections and processing

commands
•  Data Interface handles passing data back to Libsim
•  Libsim bindings exist for C, C++, Fortran, Python

–  Fortran functions may have abbreviated names, all lower case
–  Fortran functions take a length parameter after each string

parameter

•  Libsim allows for a lot of flexibility
–  Interactive vs Batch (or support both)
–  Blocking vs Polling
–  A lot of common patterns can be copied from examples with little

modification

Copyright (c) 2015 Intelligent Light
All Rights Reserved

VisIt/Libsim Data Model
•  Mesh Types

•  Structured meshes
•  Rectilinear/Curvilinear
•  I-Blanking

•  Particle meshes
•  Constructive Solid Geometry (CSG) meshes
•  Adaptive Mesh Refinement (AMR) meshes
•  Unstructured & Polyhedral meshes

§  Materials
§  Species

§  Variables
•  1 to N components
•  Zonal and Nodal
•  Enumerated type

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Instrumenting a Simulation

Simulation

main()
{

 /* iterate */
 while(! done)
 {

 calc_time_step()
 }
}

Step 1: Initialization

Step 2: Iteration

Step 3: Adaptor

Initialization

Handle Input

Handle Iteration

Adaptor
Functions

•  Environment / Setup
•  Install Broadcast

Functions
•  Parallel Setup
•  Write .sim2 file

•  Detect input or
connection requests
from VisIt (for
interactive mode)

•  Handle
connection
request

•  Handle
commands

•  Tell VisIt when the
time step changes

•  Tell VisIt whether it
should update plots

•  Save images / export
data

Create adaptor
functions that expose
simulation data to VisIt

•  GetMetaData
•  GetMesh
•  GetVariable
•  GetDomainList

Instrumentation
can be performed
incrementally in
steps

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Environment / Setup

•  Pass options to
Libsim, such as path
to VisIt

•  Libsim needs to know
about the environment
to load the VisIt
runtime library

Step 1

/*Read environment on rank 0*/
char *env = NULL;
if(par_rank == 0)
 env = VisItGetEnvironment();
/* Pass the environment to all
other processors collectively.
*/
VisItSetupEnvironment2(env);
if(env != NULL) free(env);

VisItSetDirectory(
 “/usr/local/visitdir”);
VisItSetOption(“-debug 5”);

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Broadcast Functions (Parallel)
•  Libsim will on

occasion need to
communicate among
parallel ranks

•  The application must
register functions to
be used for
communication
(keeps MPI
dependency out of
Libsim)

static int bcast_int(int *value,
 int sender, void *cbdata)
{
 return MPI_Bcast(value, 1, MPI_INT,
 sender, MPI_COMM_WORLD);
}
static int bcast_string(char *str,
 int len, int sender, void *cbdata)
{
 return MPI_Bcast(str, len, MPI_CHAR,
 sender, MPI_COMM_WORLD);
}

VisItSetBroadcastIntFunction2(
 bcast_int, NULL);
VisItSetBroadcastStringFunction2(
 bcast_string, NULL);

Step 1

Fortran Versions

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Set Rank, Parallel Flag, and Communicator (Parallel)

•  Libsim needs to know
the rank and size of
the process group

•  An MPI communicator
can be installed for
Libsim that can be
used to restrict
operations to a subset
of processors

/* Set parallel flag and rank*/
int par_rank = 0, par_size = 1;
MPI_Comm_rank (MPI_COMM_WORLD,
 &par_rank);
MPI_Comm_size (MPI_COMM_WORLD,
 &par_size);
VisItSetParallel(par_size > 1);
VisItSetParallelRank(par_rank);

/* Tell Libsim which MPI
communicator to use. */
MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD,
 &comm);
VisItSetMPICommunicator(
 (void *)&comm);

Step 1

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Batch vs Interactive

•  VisIt 2.9.0 extends Libsim
with a batch-only support
–  Forces load of VisIt runtime

library
–  Does need to listen for

interactive connections
(simpler to implement)

–  Does not need VisIt clients
to set up plots for in situ

Batch

•  The simulation must call
Libsim periodically to
respond to VisIt connection
requests or commands
–  Opens a listen socket for

inbound connections
–  Writes a sim2 file that VisIt

can use to initiate a
connection

–  A successful connection
causes the VisIt runtime
library to be loaded

• 

Interactive

Libsim permits multiple ways of instrumenting the main
loop

Step 1

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Batch Initialization

•  Batch Initialization requires the VisIt runtime
library to be loaded explicitly

•  Once the runtime is loaded, register data
adaptor functions

•  Call functions to set up visualization

VisItInitializeRuntime();

VisItSetGetMetaData(SimGetMetaData, NULL);
VisItSetGetMesh(SimGetMesh, NULL);

VisItRestoreSessionFile(“/path/to/setup.session”);

Step 1

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Interactive Initialization

•  Interactive initialization assumes that code for input
processing will be added to the main loop

•  VisIt connections are initiated by reading a “.sim2” file created
by the simulation on rank 0
if(par_rank == 0)
{
 /* Write out .sim2 file that VisIt uses to connect. */
 VisItInitializeSocketAndDumpSimFile(“sim_name”,
 “A useful description of the simulation",
 "/path/to/where/sim/was/started",
 NULL, /* reserved */
 NULL, /* reserved */
 NULL /* optional: pass filename for sim2 file */
);
}

Step 1

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Interactive Main Loop

Exit

Solve Next
Step

Check for
convergence,
end of loop

Visualization
Request

Complete VisIt
Connection

Process VisIt
Commands

Process
Console Input

VisItDetectInput

Initialize •  Libsim opens
a socket and
writes out
connection
parameters

•  VisItDetectInp
ut checks for:
– Connection

request
– VisIt

commands
– Console input

Step 2

Copyright (c) 2015 Intelligent Light
All Rights Reserved

VisItDetectInput
int mainloop_interactive(simulation_data *sim)
{
 int visitstate, blocking = 0;
 while(1) {
 if(sim->par_rank == 0) {
 visitstate = VisItDetectInput(blocking, -1);
 }
 switch(visitstate) {
 case 0: /* No input from VisIt, return control to sim. */
 simulate_one_timestep(sim);
 break;
 case 1: /* VisIt is trying to connect to sim. */
 if(VisItAttemptToCompleteConnection() == VISIT_OKAY)
 SetupCallbacks(sim);
 break;
 case 2: /* VisIt wants to tell the engine something. */
 if(!ProcessVisItCommand(sim)) {
 /* Disconnect on an error or closed connection. */
 VisItDisconnect();
 }
 break;
 case 3: /* VisItDetectInput detected console input */
 break;
 default: /* Error */
 return visitstate;
 }
 }
 return 0;
}

Step 2

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Operations During an Iteration
•  The simulation can tell

VisIt that the time step
changed so new
metadata will be
pushed to VisIt

•  The simulation can
request that all plots
be updated with new
simulation data

•  The simulation can
save the plots to an
image or it can export
them

Step 2

VisItTimeStepChanged();
VisItUpdatePlots();

char fn[100];
static int count = 0;
sprintf(fn, “image%04d.png”, count);
VisItSaveWindow(fn, 800, 800,
 VISIT_IMAGEFORMAT_JPEG);

visit_handle vars = VISIT_INVALID_HANDLE;
VisIt_NameList_alloc(&vars);
VisIt_NameList_addName(vars, "default");
sprintf(fn, “export%04d", count++);
VisItExportDatabase(fn,"FieldViewXDB_1.0",
 vars);
VisIt_NameList_free(vars);

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Adaptor
•  An adaptor comprises a set of

functions in the simulation that
VisIt calls when it needs data
– Packages your simulation’s data

in terms that VisIt can
understand

– Return actual pointers to
simulation data (zero copy)

– Return alternate representation
that VisIt can free

– Written in C, C++, Fortran,
Python

Adaptor

GetMetaData

GetMesh

GetVariable
…

Step 3

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Adaptor Functions
Function Description
GetMetaData Creates a metadata object that tells VisIt the entities

advertised from the simulation

GetMesh Returns a mesh object that contains the simulation’s
mesh coordinates and connectivity

GetVariable Returns a data array object containing a simulation
field

GetMaterial Return a material object describing how the mesh can
be decomposed into various materials

GetSpecies Return a species object indicating how the mesh’s
materials are decomposed into various material
species

GetDomainList Return a list of domains owned by the current MPI
rank

Additional adaptor functions return data for advanced features

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Registering Adaptor Functions

•  Adaptor functions need to be registered
with Libsim at runtime, once the VisIt
runtime library has been loaded
–  Fortran adaptors rely on functions with specific names

VisItSetGetMetaData(SimGetMetaData, (void*)sim);
VisItSetGetMesh(SimGetMesh, (void*)sim);
VisItSetGetCurve(SimGetVariable, (void*)sim);

visit_handle SimGetMetaData(void *cbdata)
{
 visit_handle md = VISIT_INVALID_HANDLE;
 if(VisIt_SimulationMetaData_alloc(&md)
 == VISIT_OKAY)
 {
 /* Add items here */
 }
 return md;
}

Simulation state /
User-defined

Data

Step 3

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Fortran Adaptors
•  Fortran simulations rely on specific

function names being linked into
the simulation to satisfy the Libsim
bindings

•  All adaptor functions must be
provided for a successful link
(functions can be minimal)

Fortran Adaptor
Functions
visitgetmetadata
visitgetmesh
visitgetvariable
visitgetmaterial
visitgetcurve
visitgetdomainlist
visitgetdomainbounds
visitgetdomainnesting

Step 3

integer function visitgetmesh(domain,name,lname)
implicit none
character*8 name
integer domain, lname
include “visitfortransimV2interface.inc”
visitgetmesh = VISIT_INVALID_HANDLE
end

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Example GetMetaData Function

•  GetMetaData
returns the
inventory of
data that will be
exposed to VisIt
(meshes,
scalars, etc)

•  Used to
populate
menus, etc

visit_handle SimGetMetaData(void *cbdata)
{
 visit_handle md = VISIT_INVALID_HANDLE;
 if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY)
 {
 visit_handle mmd = VISIT_INVALID_HANDLE;
 VisIt_SimulationMetaData_setMode(md,
 VISIT_SIMMODE_RUNNING);
 VisIt_SimulationMetaData_setCycleTime(md, 0, 0.);

 if(VisIt_MeshMetaData_alloc(&mmd) == VISIT_OKAY)
 {
 VisIt_MeshMetaData_setName(mmd, "mesh2d");
 VisIt_MeshMetaData_setMeshType(mmd,
 VISIT_MESHTYPE_RECTILINEAR);
 VisIt_MeshMetaData_setTopologicalDimension(mmd, 2);
 VisIt_MeshMetaData_setSpatialDimension(mmd, 2);
 VisIt_MeshMetaData_setNumDomains(mmd, 1);
 }
 VisIt_SimulationMetaData_addMesh(md, mmd);
 }
 return md;
}

Step 3

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Example GetMesh Function
Step 3

SimData_t
 nx=6 xc
 ny=8 yc
 pressure

Simulation Buffers

visit_handle
SimGetMesh(int domain, const char *name,
 void *cbdata)
{ SimData_t *sim = (SimData_t*)cbdata;
 visit_handle h = VISIT_INVALID_HANDLE;
 if(strcmp(name, "mesh") == 0) {
 if(VisIt_CurvilinearMesh_alloc(&h) != VISIT_ERROR) {
 visit_handle hxc, hyc;
 VisIt_VariableData_alloc(&hxc);
 VisIt_VariableData_alloc(&hyc);
 VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1,
 sim->nx, sim->xc);
 VisIt_VariableData_setDataF(hyc, VISIT_OWNER_SIM, 1,
 sim->ny, sim->yc);
 VisIt_CurvilinearMesh_setCoordsXY(h, hxc, hyc);
 }
 }
 return h;
}

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Example GetVariable Function
// Example!
visit_handle!
GetVariable(int domain, char *name, void
*cbdata)!
{!
 visit_handle h = VISIT_INVALID_HANDLE;!
 SimData_t *sim = (SimData_t *)cbdata;!
 if(strcmp(name, "pressure") == 0)!
 {!
 VisIt_VariableData_alloc(&h);!
 VisIt_VariableData_setDataD(h,!
 VISIT_OWNER_SIM, !
 1, sim->nx*sim->ny,!
 sim->pressure);!
 }!
 return h;!
}!

Pass simulation
buffer to Libsim

Step 3
SimData_t
 nx=6 xc
 ny=8 yc
 pressure

Simulation Buffers

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Example GetDomainList Function

•  The GetDomainList function
returns the indices of the
grids that exist on the
current MPI rank

•  Used in load balancer to
constrain work assignments

•  Possible to return
decompositions for multiple
meshes

•  Mesh decomposition free to
change over time (as in
AMR)

Step 3

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Conclusions

•  We can leverage VisIt’s data extraction
capabilities at scale via Libsim to write XDB
data for FieldView from running simulations

•  Extracted files are far smaller than volume data
and enable more productive post processing on
smaller resources

•  This should be of interest to people who
develop or support solver codes, as it helps
people to use their codes

Copyright (c) 2015 Intelligent Light
All Rights Reserved

Resources

•  Getting Data Into VisIt (https://wci.llnl.gov/codes/visit/2.0.0/

GettingDataIntoVisIt2.0.0.pdf)
•  VisIt Example Simulations (http://portal.nersc.gov/svn/visit/trunk/

src/tools/DataManualExamples/Simulations)
•  VisIt Wiki (http://www.visitusers.org)
•  VisIt Email List (visit-users@email.ornl.gov)

